Home

AI Examples

Adding generative Q&A for your documentation

Learn how to build a ChatGPT-style doc search powered using our headless search toolkit.

Supabase provides a Headless Search Toolkit for adding "Generative Q&A" to your documentation. The toolkit is "headless", so that you can integrate it into your existing website and style it to match your website theme.

You can see how this works with the Supabase docs. Just hit cmd+k and "ask" for something like "what are the features of supabase?". You will see that the response is streamed back, using the information provided in the docs:

headless search

Tech stack#

  • Supabase: Database & Edge Functions.
  • OpenAI: Embeddings and completions.
  • GitHub Actions: for ingesting your markdown docs.

Toolkit#

This toolkit consists of 2 parts:

  • The Headless Vector Search template which you can deploy in your own organization.
  • A GitHub Action which will ingest your markdown files, convert them to embeddings, and store them in your database.

Usage#

There are 3 steps to build similarity search inside your documentation:

  1. Prepare your database.
  2. Ingest your documentation.
  3. Add a search interface.

Prepare your database#

To prepare, create a new Supabase project and store the database and API credentials, which you can find in the project settings.

Now we can use the Headless Vector Search instructions to set up the database:

  1. Clone the repo to your local machine: git clone git@github.com:supabase/headless-vector-search.git
  2. Link the repo to your remote project: supabase link --project-ref XXX
  3. Apply the database migrations: supabase db push
  4. Set your OpenAI key as a secret: supabase secrets set OPENAI_KEY=sk-xxx
  5. Deploy the Edge Functions: supabase functions deploy --no-verify-jwt
  6. Expose docs schema via API in Supabase Dashboard settings > API Settings > Exposed schemas

Ingest your documentation#

Now we need to push your documentation into the database as embeddings. You can do this manually, but to make it easier we've created a GitHub Action which can update your database every time there is a Pull Request.

In your knowledge base repository, create a new action called .github/workflows/generate_embeddings.yml with the following content:


_17
name: 'generate_embeddings'
_17
on: # run on main branch changes
_17
push:
_17
branches:
_17
- main
_17
_17
jobs:
_17
generate:
_17
runs-on: ubuntu-latest
_17
steps:
_17
- uses: actions/checkout@v3
_17
- uses: supabase/supabase-embeddings-generator@v0.0.x # Update this to the latest version.
_17
with:
_17
supabase-url: 'https://your-project-ref.supabase.co' # Update this to your project URL.
_17
supabase-service-role-key: ${{ secrets.SUPABASE_SERVICE_ROLE_KEY }}
_17
openai-key: ${{ secrets.OPENAI_KEY }}
_17
docs-root-path: 'docs' # the path to the root of your md(x) files

Make sure to choose the latest version, and set your SUPABASE_SERVICE_ROLE_KEY and OPENAI_KEY as repository secrets in your repo settings (settings > secrets > actions).

Add a search interface#

Now inside your docs, you need to create a search interface. Because this is a headless interface, you can use it with any language. The only requirement is that you send the user query to the query Edge Function, which will stream an answer back from OpenAI. It might look something like this:


_31
const onSubmit = (e: Event) => {
_31
e.preventDefault()
_31
answer.value = ""
_31
isLoading.value = true
_31
_31
const query = new URLSearchParams({ query: inputRef.current!.value })
_31
const projectUrl = `https://your-project-ref.supabase.co/functions/v1`
_31
const queryURL = `${projectURL}/${query}`
_31
const eventSource = new EventSource(queryURL)
_31
_31
eventSource.addEventListener("error", (err) => {
_31
isLoading.value = false
_31
console.error(err)
_31
})
_31
_31
eventSource.addEventListener("message", (e: MessageEvent) => {
_31
isLoading.value = false
_31
_31
if (e.data === "[DONE]") {
_31
eventSource.close()
_31
return
_31
}
_31
_31
const completionResponse: CreateCompletionResponse = JSON.parse(e.data)
_31
const text = completionResponse.choices[0].text
_31
_31
answer.value += text
_31
});
_31
_31
isLoading.value = true
_31
}

Resources#